Math 55 Quiz 5 DIS 106

Name: \qquad 7 Mar 2022

1. Let f_{n} be the $n^{\text {th }}$ Fibonacci number. (Recall that these are defined by $f_{1}=1, f_{2}=1$, and $f_{n+2}=f_{n}+f_{n+1}$ for $n \geq 1$.)
Use induction to show that $f_{n}<2^{n}$ for every $n \geq 1$. [5 points]
Let $P(n)$ be the proposition that $f_{n}<2^{n}$.
For $n=1, f_{1}=1<2=2^{1}$, so $P(1)$ is true.
For $n=2, F_{2}=2<4=2^{2}$, so $P(2)$ is true.
Suppose $P(k)$ is true for all $k \leq n$, where $n \geq 2$
Then

$$
\begin{aligned}
f_{n+1} & =f_{n-1}+f_{n} \\
& <2^{n-1}+2^{n} \text { by } P(n-1) \text { and } P(n) \\
& =2^{n-1} \cdot 3 \\
& <2^{n-1} \cdot 4=2^{n+1}
\end{aligned}
$$

So $P(n+1)$ is true.
By strong induction, $P(n)$ is true for every $n \geq 1$.
2. Find the number of bit strings of length not exceeding 10 that have at least one 0 bit. Explain your answer. [5 points]
There are 2^{n} bit strings of length n in total, and only one of them does not contain any 0 bits (namely, 1...1). So there are exactly $2^{n}-1$ bit strings of length n that have at least one 0 bit.
Hence there are $\sum_{n=1}^{10}\left(2^{n}-1\right)=2^{11}-12=2036$ bit strings of length not exceeding 10 that have at least one 0 bit.

