Math 55 Quiz 5 DIS 106

Name: _____

7 Mar2022

1. Let f_n be the n^{th} Fibonacci number. (Recall that these are defined by $f_1 = 1, f_2 = 1$, and $f_{n+2} = f_n + f_{n+1}$ for $n \ge 1$.)

Use induction to show that $f_n < 2^n$ for every $n \ge 1$. [5 points]

Let P(n) be the proposition that $f_n < 2^n$. For n = 1, $f_1 = 1 < 2 = 2^1$, so P(1) is true. For n = 2, $F_2 = 2 < 4 = 2^2$, so P(2) is true. Suppose P(k) is true for all $k \le n$, where $n \ge 2$ Then

$$f_{n+1} = f_{n-1} + f_n$$

< $2^{n-1} + 2^n$ by $P(n-1)$ and $P(n)$
= $2^{n-1} \cdot 3$
< $2^{n-1} \cdot 4 = 2^{n+1}$

So P(n+1) is true. By strong induction, P(n) is true for every $n \ge 1$. 2. Find the number of bit strings of length not exceeding 10 that have at least one 0 bit. Explain your answer. [5 points]

There are 2^n bit strings of length n in total, and only one of them does not contain any 0 bits (namely, 1...1). So there are exactly $2^n - 1$ bit strings of length n that have at least one 0 bit.

Hence there are $\sum_{n=1}^{10} (2^n - 1) = 2^{11} - 12 = 2036$ bit strings of length not exceeding 10 that have at least one 0 bit.